
Master Thesis

Electric Cars - Efficient Centralized Charging

Pit Schneider

Master Thesis DKE-19-24

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Data Science and Knowledge Engineering

of the Maastricht University

Thesis Committee:

Dr. Matúš Mihalák
Dr. Georgios Stamoulis

Maastricht University
Faculty of Science and Engineering

Department of Data Science and Knowledge Engineering

June 20, 2019



Contents

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Definitions 4

3 Observations 6
3.1 First Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1.1 Detecting critical charging stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.2 Schedule ordering influences program cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.1.3 Balancing leads to minimal waiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Program Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.1 Conversion to reduced programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2.2 Conversion to independent programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.3 Conversion to serial programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Critical Blocks - First Algorithm 12
4.1 Computing i∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.2.1 Single independent schedule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2.2 Multiple independent schedules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.1 Analyzing schedule charging cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.3.2 Analyzing total waiting cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.3.3 Disproving instance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5 Critical Blocks - Second Algorithm 18
5.1 Computing j∗ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.2 Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.1 Time complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2.2 Cost calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6 Critical Blocks - Third Algorithm 22
6.1 Distributing Cars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1.1 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.1.2 Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.2 Distributing Charging Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.1 Optimum distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2.2 Perfectly unbalanced . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.3 Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7 Critical Blocks - Fourth Algorithm 26
7.1 Computing u∗(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.2 Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.3 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3.1 Analysis for critical blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3.2 Analysis for arbitrary roads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7.4 Algorithm Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Conclusion 30



Abstract

A planning and scheduling problem is defined using a path graph, with a subset of the nodes denoting charging stations,
to be the model for the road of n electric cars. Centralized planning is used to select a subset of charging stations for
every car, in a way that the cost, defined in terms of number of rechargings and time spent queuing at the stations, is
minimized during the road traversal. The structure and properties of efficient charging plans are explored, followed by
an algorithmic analysis of computing solutions for the problem. More precisely, four algorithms which are designed to
solve a specific set of input instances, are presented in an incremental approach. This set of instances is characterized
by certain properties of the subset of charging stations induced by the cars’ battery capacity. Along the way, methods
to compute essential values for given input instances, useful to the understanding and development of an optimum
algorithm, are proposed.



Chapter 1

Introduction

1.1 Context
The transition to cars that are powered entirely by
electricity is undoubtedly gaining a certain momentum
in recent years. Due to more and more governments
actively supporting all-electric roads, advancements
in battery technology, and a progressively changing
public opinion, it seems unavoidable that electrical cars
will surge in popularity in the future. However, it is
commonly known that charging electric cars takes a
considerable amount of time compared to traditional
petrol driven cars. On top of that, charging stations
along the roads might not be available in large quantities,
especially during the early transition phase. One can
imagine that, due to the lack of infrastructure, it will
be problematic to serve demand optimally. As a result,
drivers may encounter long waiting times to charge their
cars.

Centralized planning combined with a cooperative
strategy could be a way to reduce the impact of this
shortcoming and could turn out to be convenient for
future inter-connected electric cars. By ensuring that all
actors cooperate, valuable time can be saved by making
the right choice in terms of which charging station to
use. That is why the goal of this work is to make use
of centralized planning in order to develop a charging
plan for everyone. In particular, the findings presented
in this thesis aim to analyze the computation of an
optimal plan for all cars on the road. This is conducted
by investigating the structure and properties of plans in
general. A next undertaking is to decide how to make
use of those findings in order to compute optimum, or
near optimum plans. For the purpose of determining
an optimum, a cost function is defined. It is designed
to evaluate the combined travel time of all the cars and
to serve as a benchmark for the efficiency of the plan.
Furthermore, a simple model to represent a single road
with charging stations is created and used throughout
this thesis.

This chapter will, in the following, lay out a formal
problem definition and make the connection to related
work. From there on, the thesis is organized as follows:

• Chapter 2 is dedicated to expand the terminology
and definitions of the problem in question.

• Chapter 3 makes use of the definitions to perform
some early observations. Those are of particular use
in the following algorithmic chapters.

• Chapters 4-7 each introduce and discuss an algo-
rithm tailored to solve a specific set of problem in-
stances.

• Chapter 8, in a concluding way, serves as a review of
the most important aspects of this thesis.

1.2 Problem Definition
The problem consists of n electrical cars, contained in
the set A = {a1, a2, ..., an}. Given car ai, we refer to i as
the index of the car. Also, every car in A has the same
battery capacity k. In this work, time is discretized into
units of time steps. The problem starts at time t = 0
where all the cars are initialized in a fully charged state.
Let G=(V,E) denote a path graph having length `= |E|
and nodes enumerated along the path with indices from
0 to `. The road on which the cars are driving is modeled
by G. At t = 0 all the cars are located at node v0 and
start driving. For this problem, driving is constrained
to a single direction, which is towards v`. The cars stop
driving when having arrived at v`.

Furthermore, we consider V = {0, 1, ..., `} to be the
set of all node indices in G. We use this to define K⊆ V ,
denoting the subset containing the indices of all charging
stations, ordered increasingly according to the node
indices. Since the cars only start at v0, arrive at v`, and
never charge at the respective nodes, it is irrelevant for
the problem whether v0 and v` are contained in K or not.

Every charging station in K can serve a single car
only at each time step and always recharges a car’s
battery to full capacity. A queue is associated to every
charging station. Cars that want to charge at a charging
station, but cannot because it is occupied, are sent to the
queue. If there are multiple cars arriving simultaneously
at a non occupied charging station, the car with the
lowest index has priority to charge, all other cars join
the queue. Multiple cars joining a queue at the same
time underlies the rule of the cars joining the queue in
increasing order of their index.

Traversing an edge in G, as well as recharging at a
charging station, takes one time unit. Additionally, an
edge traversal decreases the battery level of the driving
car by one unit. Hence, since the capacity of the battery
is k, any car can drive along at most k edges without
charging.

1



Definition 1.2.1 (Feasible schedule). A feasible
schedule Si of a car ai are the indices of the charging
stations at which ai charges, s.t.

∀q ∈ Si :

∃p ∈ Si ∪ {0} s.t. q − p ≤ k and p < q and
∃r ∈ Si ∪ {`} s.t. r − q ≤ k and r > q. (1.1)

Similarly to K, every schedule Si is seen as ordered in-
creasingly.

In this thesis, only path graphs having ` > k are con-
sidered since Si = ∅, i.e. not charging at all, is not of
particular interest. Additionally, we restrain the work
to feasible schedules only and refer to them as simply
"schedules".

The problem is seen as being built around four pa-
rameters, named K, n, k, and `. Assigning values
to all parameters has the effect of creating a problem
instance I. An example instance can be seen with
Figure 1.1.

Figure 1.1: Example instance I with K = {1, 2, 4, 5},
n = 3, k = 3, and ` = 6, depicted at t=0.
A possible feasible schedule for any car ai is
Si = {2, 5}.

Definition 1.2.2 (Program). A program P , for a given
instance I, is defined as a sequence of feasible schedules
associated to every car, i.e.,

P = (S1, S2, ..., Sn), (1.2)

where Si is the schedule of car ai.

Given a program P , two costs are associated to
every car ai:

• The charging cost ci(P ).
For every recharging of car ai, the value of ci(P )
is increased by one. Hence, ci(P ) is equal to the
number of stops in Si, i.e. ci(P ) = |Si|.

• The waiting cost wi(P ).
Similarly, for every time step car ai has to wait in a
queue, wi(P ) is increased by one.

Definition 1.2.3 (Cost of a program). The cost of a
program P is defined as

cost(P ) =

n∑
i=1

(
ci(P ) + wi(P )

)
. (1.3)

It should be noted that for every car ai, the value of
ci(P ) + wi(P ) is equal to the number of time steps that
ai requires to arrive at v`, without the time needed for
all ` edge traversals.

Furthermore, a program P is said to be optimum
if P has minimum cost. Using (1.3), a minimization
problem is defined. EfficientCharging is the problem
of computing an optimum program P for any input
instance I.

In the context of this thesis, two main tasks are
looked at:

• The study of the structural properties of programs.
This undertaking will help to establish theorems
that, for example, reason about the existence of at
least one optimum program with a specific property.
Another used logical proposition is that there is no
optimum program for a given program structure. All
of this knowledge effectively lays the groundwork for
the next task.

• The development of an algorithm that solves any
problem instance in a reasonable time. To be more
precise, the main objective is to analyze the existence
of an algorithm that runs in polynomial time. Also,
due to the complexity of EfficientCharging, the
algorithms presented in this thesis are designed to
deal with a subset of problem instances as input only.

1.3 Related Work
After having defined EfficientCharging in a formal
way, it is time to connect it to the existing literature.
Certainly it can be stated that EfficientCharging
falls under the category of planning and scheduling
problems. The field often refers to "jobs" and "ma-
chines", where the former needs to be processed by the
latter. It seems natural that, in the case of the problem
in question, cars are represented by jobs and charging
stations by machines.

The class of flow shop scheduling problems is prob-
ably aligning the most with EfficientCharging.
Although the limitation, that no machine can process
more than one job at a time, is clearly part of Effi-
cientCharging as well, an obvious difference is the
fact that not every job has to be necessarily processed
by every machine. The subset of machines has to be
carefully selected by considering the battery capacity of
the cars.

2



After some research, to our knowledge, it seems that
this exact variation of a flow shop scheduling problem
hasn’t been studied and published yet. Nevertheless, it
should be mentioned that in the context of a Bachelor’s
thesis [1], the game theoretic questions of the problem
have been investigated. Also, the work of an internship
[2], that has been focusing on the algorithmic problem
of relatively simple instances of EfficientCharging,
provides the baseline for this thesis. Those instances will
not be covered in the following and we consider this as a
continuation of the previous work.

3



Chapter 2

Definitions

In this chapter, we introduce further terminology that we
use to study the problem EfficientCharging. To start
with, several small definitions concerning cost, schedules
and charging stations are given.

Definition 2.0.1 (Total charging and waiting cost).
The total charging cost C(P ) and the total waiting cost
W (P ) of a program P are defined as

C(P ) =

n∑
i=1

ci(P ) and W (P ) =

n∑
i=1

wi(P ). (2.1)

Definition 2.0.2 (Cost originating from a charging
station). Given a program P and an index of a charging
station i ∈ K, the total number of time steps that all cars
use to charge at vi or wait in the queue at vi, is called
the cost originating from vi.

Definition 2.0.3 (Greedy schedule). Given K, k, and
`, we denote by Sgreedy the schedule that does a maximum
of edge traversals, with respect to k and the indices in K,
before every charging stop. Also copt is defined as

copt = |Sgreedy|. (2.2)

For instance, usingK={1, 2, 4, 5}, k=3, and `=6 (values
used for Figure 1.1), we would obtain Sgreedy = {2, 5} and
copt = 2.

Definition 2.0.4 (Number of unique schedules).
Given a program P , the function unique(P ) returns the
set containing all unique schedules that are contained in
P . Furthermore we denote by s the cardinality of the set,
i.e.

s = |unique(P )|. (2.3)

Definition 2.0.5 (Unique charging stations). Given
a program P , the function uniqueStations(P ) returns
the set containing all indices of unique charging stations
that are contained in P . Furthermore we denote by u the
cardinality of the set, i.e.

u = |uniqueStations(P )|. (2.4)

Please note that the above definition is also valid in the
exact same way for a set of schedules which does not
necessarily represent a program.

Definition 2.0.6 (Critical charging station). Given
K, k, and `, a critical charging station is a charging
station that is contained in every feasible schedule.

Next, we define the properties proportional, reduced,
independent and serial. They can be applied to pro-
grams and sometimes to sets of schedules as well.

Definition 2.0.7 (Proportional program). A pro-
gram P is proportional if every schedule in P has the
same number of charging stations.

Definition 2.0.8 (Reduced program). A program
P = (S1, S2, ..., Sn) is reduced if P satisfies

∀Si ∈ P : @ m,n, o ∈ Si ∪ {0, `}
s.t. m < n < o and o−m ≤ k. (2.5)

Definition 2.0.9 (Independent set of schedules). A
set of schedules is independent if no pair of schedules
belonging to the set contains a common charging station.

Definition 2.0.10 (Independent program). A pro-
gram P is independent if unique(P ) is independent.

Definition 2.0.11 (Serial set of schedules). An or-
dered set of schedules Y is serial when Y is independent
and Y follows the format of

Y = {{v11 , v12 , ..., v1x1
}, {v21 , v22 , ..., v2x2

}, ..., {vs1, vs2, ..., vsxs
}}

• with s > 0 and x1 > 0, x2 > 0, ..., xS > 0,

• ∀m,n s.t. 1 ≤ m < n ≤ s : 0 ≤ xn−xm ≤ 1,

• ∀vji , v
j′

i′ : i = i′ and j < j′ =⇒ vj
′

i′ < vji ,

• ∀vji , v
j′

i′ : i < i′ =⇒ vji < vj
′

i′ . (2.6)

An example of a serial set of schedules is the set
Y = {{3, 6}, {2, 5, 8}, {1, 4, 7}}.

Definition 2.0.12 (Serial program). A program P is
serial if unique(P ) is serial.

Furthermore, the following Definition 2.0.13 describes a
way to evenly distribute (balance) cars over a set of charg-
ing stations. The idea is to prevent long queues and wait-
ing times.

Definition 2.0.13 (Balancing cars over charging
stations). Given K, k, and `, let A′ ⊆ A denote a subset
of cars and let K ′ ⊆ K, with |K ′| ≤ k, denote a subset
of charging stations. In the context of some program P ,
let A′i ⊆ A′ denote the cars that charge at i ∈ K ′. Let
small denote the smallest node index in K ′. Let center
define the smallest node index overall, s.t.

small ≤ center and center mod k = 0. (2.7)

4



A′ is balanced over K ′ when every aj ∈ A′ charges at
exactly one station in K ′, s.t.

∀i ∈ K ′ : |A′i| =
⌈ |A′|
|K ′|

⌉
or |A′i| =

⌊ |A′|
|K ′|

⌋
and

∀m,n ∈ K ′:
• |A′m| ≤ |A′n| if m < n ≤ center,

• |A′m| ≥ |A′n| if m ≤ center < n,

• |A′m| ≤ |A′n| if center < m < n. (2.8)

Using the next Definition 2.0.14, a subset Icb of problem
instances, is defined. The subsequent Definition 2.0.15
provides further terminology regarding those instances.

Definition 2.0.14 (Critical blocks). A block of charg-
ing stations is defined by the set

B = {f, f+1, ..., g−1, g}, where:
• 0 < f < g < `,

• ∀i s.t. f ≤ i ≤ g : i ∈ K, and
• f−1 /∈ K and g+1 /∈ K. (2.9)

In another way, a block can be described as a maximal set
of consecutive charging stations. We additionally define

start(B) = f,

end(B) = g,

length(B) = g − f + 1 = |B|. (2.10)

A block is critical if every car has to charge at at least
one charging station belonging to the block. Let b define
the total number of blocks, let B1 denote the block that
is the closest to v0 and let Bm define the mth block along
the path graph. If every block is critical, then

∀m s.t. 3 ≤ m ≤ b: start(Bm)− end(Bm−2) > k and
• start(B2) > k,

• `−end(Bb−1) > k. (2.11)

Furthermore, we denote by Icb the set of all problem
instances that satisfy (2.11).

Definition 2.0.15 (Zones inside critical blocks).
The arriving zone of a critical block is defined as the
set of charging stations that can serve as the first stop
inside a block. Similarly, the leaving zone of a critical
block is denoted as the set of charging stations that can
serve as the last stop inside a block.

Using end(B0) = 0 and start(Bb+1) = ` only for the
following definition, there is for every Bm

arrivingZone(Bm)

= {i | i∈Bm and (i− end(Bm−1)) ≤ k} and
leavingZone(Bm)

= {i | i∈Bm and (start(Bm+1)− i) ≤ k}. (2.12)

We consider zones to be a special type of block, that is
why the equations in (2.10) also hold for zones.

5



Chapter 3

Observations

After having established the terminology and definitions
of EfficientCharging, we use this chapter to provide
preliminary observations and theorems. Especially the
findings of the second section, investigating the conver-
sion of programs, are of importance for the later stages
of this thesis.

3.1 First Observations
To start, this section covers some early observations con-
cerning schedule ordering, critical charging stations and
waiting time.

3.1.1 Detecting critical charging stations
The definition of a critical charging station has been given
by Definition 2.0.6. To detect all critical charging sta-
tions, the following simple algorithm is proposed.

Algorithm 1 Detecting all critical charging stations

1: function (K, k, `)
2: Critical← ∅
3: left← 0
4: station← K[0]
5: K ← (K \K[0]) ∪ {`}
6: for each right ∈ K do
7: if (right− left) > k then
8: Critical← Critical ∪ {station}
9: end if

10: left← station
11: station← right
12: end for
13: return Critical
14: end function

Given three consecutive charging stations along the path
graph, in order to verify the middle station for being
critical, it is crucial to observe the distance between
the left and right neighbouring charging stations. If
right − left > k, then it is impossible to get from left
to right without charging in between, therefore station
must be a critical charging station and is included in the
set Critical.

The approach of Algorithm 1 is to consider indices
0 and ` as charging stations. This is because all cars
start at v0 and arrive at v` and this enables the verifica-
tion of the first and last charging station in K. Every
station, except v0 and v`, is processed one by one and
seen as the middle node between left and right.

3.1.2 Schedule ordering influences pro-
gram cost

In this part we explore the effect of reordering schedules
inside the program sequence. The first theorem states the
requirement to carefully order the schedules in a program
P , in order to minimize cost(P ) for the given schedules.
The second theorem however, shows that the order of
the schedules doesn’t influence the cost of independent
programs.

Theorem 3.1.1. There is a program P with cost(P ),
where it is possible to create program P ′ by reordering the
schedules inside the sequence P , s.t. cost(P ′) > cost(P ).

Proof. By giving an example, it can be shown that the
ordering of the schedules indeed influences the cost of the
program. Using instance I with K = {2, 3, 4, 5}, n = 4,
k=3, and `=7, there is

P = ({2, 5}, {2, 5}, {3, 4}, {3, 5}) with
cost(P ) = 11 and
P ′ = ({2, 5}, {2, 5}, {3, 5}, {3, 4}) with
cost(P ′) = 12. (3.1)

In both programs the first and second pair of cars are
creating two units of waiting cost, one at charging station
v2 and one at v3. The difference is the queuing at v5. In
P car a4 is arriving at v5 at t= 7 and only has to wait
for a2 to finish charging. In P ′ however, the car with the
same schedule (this time a3) arrives earlier at t=6. This
creates two units of waiting cost. One unit for a3 having
to wait for a1, and a second unit for a2 having to wait for
a3.

Theorem 3.1.2. Given an independent program P . By
creating independent program P ′ through reordering the
schedules inside P , there is always cost(P ′) = cost(P ).

Proof. Clearly, for any reordering there is

C(P ′) = C(P ). (3.2)

Since every Si ∈ unique(P ′) retains the same number
of cars assigned to itself, compared to P , we are ensured
that

W (P ′) = W (P ). (3.3)

That is why cost(P ′) = cost(P ).

6



3.1.3 Balancing leads to minimal waiting
For this subsection, we refer to Definition 2.0.13 and the
associated A′, K ′, and A′i. The idea of Theorem 3.1.3,
which is incorporated in later presented algorithms, is to
show that the waiting cost can be reduced by balancing
cars over charging stations.

Theorem 3.1.3. Considering the set X of programs
where:

• Every car in A′ has to charge at exactly one charging
station in K ′.

• All the cars in A′i arrive at vi at the exact same time.

Let W ′(P ) denote the total waiting cost originating from
all stations in K ′. If A′ is balanced over K ′, then the
value of W ′(P ) is a minimum among all programs in X.

Proof. Let there be |K ′| queues that can contain up to
n cars each (n spots). Every spot in every queue has a
position in its queue. The first spot in the queue has
position 0, while the last position is n− 1.

Assigning all A′ cars to a spot in a queue is needed to get
a value for W ′(P ). Let Rowi denote the set of spots in
all the queues that have position i in their queue. Also,
let rowCost(Rowi) denote the waiting cost associated to
every spot in Rowi. It can be stated that

rowCost(Rowi) = i for 0 ≤ i ≤ n− 1. (3.4)

It should be noted that rowCost(Row0)=0 because the
cars associated to the spots in Row0 can charge straight
away.

It is obvious that a minimum for W ′ is obtained
by iteratively filling the spots in each Rowi with |K ′|
cars from i = 0 to i = n. Before filling Rowi, one must
check whether

|A′| − |K ′| · (i− 1) > |K ′|. (3.5)

If equation (3.5) does not hold, Rowi is the last row to
be filled. In that case, in order to guarantee that A′ is
balanced over K ′, the remaining (|A′|− |K ′| · (i−1)) cars
are assigned to spots in accordance to Definition 2.0.13.

If equation (3.5) does hold, we can proceed and fill
Rowi with |K ′| cars.

Figure 3.1: A′ balanced over K ′.

Figure 3.1 illustrates an example where a set of cars
A′ = {a1, a2, a3, a4, a5} is balanced over a set of charging
stations K ′.

3.2 Program Conversions
Next, we will focus on the properties reduced,
independent and serial. In the following, given a pro-
gram, we will analyze the effect of modifying the program
in a way that it adapts one of the properties.

3.2.1 Conversion to reduced programs
By referring to Definition 2.0.8 and considering the next
two theorems, we can conclude that, for a given instance
I, there always exists at least one reduced program among
all optimum programs.

Theorem 3.2.1. Given an instance I and a program
P that is not reduced, P can be converted into reduced
program P ′ s.t. cost(P ′) ≤ cost(P ).

Proof. For every Si∈unique(P ) that contains m, n, and
o, s.t.

m,n, o ∈ Si ∪ {0, `}, m < n < o, and o−m ≤ k, (3.6)

the charging stop at node n can be removed from Si.
This is realizable since o−m≤ k. This is repeated until
no m,n and o can be found in any Si ∈ unique(P ).
Following this procedure generates a reduced program
P ′. It remains to be shown that cost(P ′) ≤ cost(P ).

Every time we remove a charging station vn from
Si, let x denote the number of cars that are asso-
ciated to Si in P . An effect of the deletion of n
is that C(P ′) = C(P ) − x. Additionally we have
W (P ′) ≤ W (P ) + x, because for every ai among all x
cars, there is

wi(P
′)− wi(P ) ≤ 1. (3.7)

This is because in the worst case every car has to wait in
the queue at o for every time step that it arrives ear-
lier at o compared to P . This reasoning shows that
every deletion of charging station vn from Si results in
cost(P ′) ≤ C(P )− x+W (P ) + x = cost(P ).

Theorem 3.2.2. Among all optimum programs for a
given problem instance I, at least one program is reduced.

Proof. Given a set of optimum programs for I which does
not yet contain a reduced program, we can arbitrarily
select one program P in the set and refer to Theorem 3.2.1
in order to transform it into reduced program P ′ with
cost(P ′) = cost(P ).

7



3.2.2 Conversion to independent pro-
grams

In this thesis, mostly only independent programs are cov-
ered. Most significantly, all four main algorithms pre-
sented in chapters 4 to 7 return independent programs.
This is why the exploration of the effects of modifying
non independent programs and turning them into inde-
pendent programs, seems essential. Starting with Theo-
rem 3.2.3, we try to show that it is possible to convert very
basic non independent programs, containing two unique
schedules, without increasing the cost.

Theorem 3.2.3. Given a non independent program P
with unique(P ) = 2 schedules, it is possible to convert P
into independent program P ′ s.t. cost(P ′) ≤ cost(P ).

Proof. Given S1, S2 ∈ unique(P ), let first denote the
smallest node index in the set S1 ∩ S2. Furthermore, we
define the sets StartSi and EndSi in a way that

StartSi = {j ∈ Si|j < first} and
EndSi = {j ∈ Si|j > first}. (3.8)

Using this, we can construct a single new schedule S′1 in
a way that

x = argmin
i∈[1..2]

|StartSi |,

y = argmin
i∈[1..2]

|EndSi
|,

S′1 = StartSx ∪ first ∪ StartSy .

(3.9)

All n cars are assigned to S′1 in order to create indepen-
dent P’, s.t.

unique(P ′) = {S′1},
P ′ = (S′1, S

′
1, ..., S

′
1). (3.10)

We can express the charging cost of P ′ by

|S′1| · n = C(P ′) ≤ C(P ). (3.11)

The comparison to C(P ) holds because

|S′1| ≤ |S1| and |S′1| ≤ |S2|. (3.12)

Since charging stations can only be left by one car at
given time step, waiting cost in P ′ only originates from
the first station in S′1. For a single station, this waiting
cost is however maximal, due to the fact that all n cars
arrive there simultaneously. From there on, all cars
arrive at the subsequent stops with a one time unit delay
between each other.

Let Wfirst(P ) denote the waiting cost that originates
from vfirst only in P . There is

W (P ′)−Wfirst(P ) = z ≥ 0. (3.13)

However we can state that every unit in the difference
of z is saved by arriving one time step later at vfirst in
P , compared to P ′, due to an additional charging stop
before vfirst. That is why every gain in waiting cost is
canceled out by a loss in charging cost, which makes it
impossible that cost(P ′) > cost(P ).

For more complex programs with a higher number of
schedules, a way to show the relations among those sched-
ules is needed. Given a non independent set of schedules
Y , we can create a graph denoted F , showing the inter-
ferences of the schedules. Nodes in F represent schedules
and an undirected edge connects schedules Si and Sj if it
does not hold that

Si ∩ Sj = ∅. (3.14)

Figure 3.2: Example graph F for schedules S1, S2, and
S3.

The graph in Figure 3.2 shows an example where all
schedules are fully connected, i.e. every schedule pair
shares at least one common charging station.

Theorem 3.2.4. Given a non independent program P
and the related graph F . If F is disconnected and ev-
ery disconnected component contains a maximum of two
nodes, it is possible to convert P into independent pro-
gram P ′ s.t. cost(P ′) ≤ cost(P ).

Proof. Looking back at the previous Theorem 3.2.3, it
should be pointed out that the newly created schedule
S′1 does not use any charging stations that are not in S1

or S2. That is why, given F , we can apply the same
modifications to every disconnected component with two
nodes. The resulting P ′ will be independent and we are
ensured that cost(P ′) ≤ cost(P ).

An idea, in order to perform conversion on components
in F having more than two nodes, is to assign all cars
to the schedules in the maximum independent set of the
component only. However, Theorem 3.2.5 shows that this
might result in higher program cost. At least we can claim
this for one instance where F is fully connected.

Theorem 3.2.5. Given a non independent program P
that has been computed for instance I. We are also given
the graph F related to P , which is fully connected. Cre-
ating independent program P ′ by assigning all n cars the

8



schedule Sgreedy, s.t. cost(P ′) ≤ cost(P ), is not always
possible.

Proof. To show this we use an instance as depicted on
Figure 3.3 and a program which, when modeled as a
graph, leads to Figure 3.2.

Figure 3.3: Fully connected schedules in unique(P ).

Program P = ({4, 6, 10}, {3, 7, 10}, {4, 7, 11}) has cost

cost(P ) = C(P ) +W (P )

= 9 + 2

= 11. (3.15)

Please note that no waiting cost is originating from
v7. Car a3 (using S3) arrives one time step later at v7
than a2. This is because a3 had to wait for a1 to finish
charging at v4.

Assigning Sgreedy to every car results in
P ′ = ({4, 8, 12}, {4, 8, 12}, {4, 8, 12}) with cost

cost(P ′) = C(P ′) +W (P ′)

= 9 + 3

= 12. (3.16)

We obtain 12 = cost(P ′) > cost(P ) = 11.

Unfortunately, even when limiting the conversion proce-
dure to path graphs, no evidence of a way to obtain lower
or equal cost for the resulting independent program has
been found during the research of this thesis. However,
for every studied problem instance, we were always able
to compute at least one independent program with lower
or equal cost, compared to the best non independent pro-
gram that we found. This is why we very carefully state
that, based on intuition and lack of counterexample, it
seems that EfficientCharging always incorporates an
independent program as a solution. Thus we use the fol-
lowing conjecture to express a possible aspect of future
research.

Conjecture 3.2.1. Given an instance I, there exists at
least one optimum independent program P .

3.2.3 Conversion to serial programs
Lastly, we explore the conversion to serial programs. In
this subsection, three theorems are presented which all
aim to show the possibilities in terms of converting pro-
grams s.t. they satisfy Definition 2.0.11.

Theorem 3.2.6. Given an independent and proportional
program P , it is possible to convert P into serial program
P ′ s.t. cost(P ′) = cost(P ).

Proof. We denote X the sequence consisting of all
charging stations in P , ordered increasingly. In order to
create serial P ′, we reassign every charging station in X
to a new schedule S′i∈P ′, in a way that the jth charging
station in X is assigned to schedule S′s−((j−1) mod s)

(round robin assignment).

To show that every S′i ∈ P ′ is still feasible, we con-
sider every two consecutive charging stations

b, c ∈ (0 ∪ S′i ∪ `), s.t. b < c (3.17)

and try to argue that c − b ≤ k. This can be done by
stating that there can be at most s−1 charging stations
in between b and c in the sequence 0∪X ∪ `. The reason
for this is the round robin method used to reassign
charging stations.

Let Sx ∈ P denote one schedule that has no charging
station between b and c in P . Also, we define first and
last to be the first and last charging station in Sx. There
will always be

• a, d ∈ Sx s.t. a ≤ b < c ≤ d, or
• last ∈ Sx < b, or
• first ∈ Sx > c. (3.18)

Every case states that Sx ∈ P shows that c−b ≤ k. Either
it is possible in P to get from a to b, from last to ` or from
0 to first. In every case the distance c−b is smaller, thus
also smaller or equal than k. Reassigning the charging
stations ensures that cost(P ′) = cost(P ). This is because
every schedule S′i retains the same amount of charging
stations and associated cars than schedule Si.

For the next theorem, a few adjustments are made. On
one hand, the constraint requiring P to be proportional
is lifted, on the other hand uniqueStations(P ′) is consid-
ered instead of cost(P ′).

Theorem 3.2.7. Given an independent program P ,
it is possible to convert P into serial P ′ s.t.
|uniqueStations(P ′)| = |uniqueStations(P )|.

Proof. For this proof, we refer to the above Theorem 3.2.6
and the sequence denoted X. Since P is independent,
there is

|X| = |uniqueStations(P )|. (3.19)

9



Theorem 3.2.6 shows that we can reassign every charging
station in X to a new schedule S′i ∈ P ′ s.t. P ′ is serial.
By doing this we clearly ensure that

|uniqueStations(P ′)| = |uniqueStations(P )|. (3.20)

However, it turns out that serial conversion is not always
possible, especially when a lower or equal cost is desired
as a result.

Theorem 3.2.8. There exists an instance I ∈ Icb and
program P s.t.:

• P is independent, non serial, and a program for I.

• P cannot be converted into serial program P ′ s.t.
cost(P ′) ≤ cost(P ).

Proof. All conditions are satisfied when using:

• Instance I:
K = {2, 3, 4, 6, 7, 8, 9, 11, 12, 13},
n = 5,
k = 3,
` = 15.

• Program P :
unique(P ) = {{3, 6, 9, 12}, {2, 4, 7, 8, 11, 13}},
S1 = S2 = S3 = {3, 6, 9, 12},
S4 = S5 = {2, 4, 7, 8, 11, 13},
P = (S1, S2, S3, S4, S5).

We can express the cost of P as

cost(P ) = C(P ) +W (P )

= 24 + 4

= 28. (3.21)

When creating serial P ′, the value of s must either be
1 or 2 in order for P ′ to be independent (part of the
serial Definition 2.0.11). Having 3 or more schedules in
an independent program for I is not possible. A precise
way of showing this will be shown with Theorem 4.1.1 in
Chapter 4.

s=1

Clearly, in this case the serial P ′ with lowest cost is

Sgreedy = {3, 6, 9, 12} = S1 = S2 = S3 = S4 = S5,

P ′ = (S1, S2, S3, S4, S5). (3.22)

We express the cost of P ′ as

cost(P ′) = C(P ′) +W (P ′)

= 20 + 10

= 30. (3.23)

s=2

Since P ′ has to be serial, there is only one possibility for
the set unique(P ′), which is

unique(P ′) = {{3, 6, 8, 11, 13}, {2, 4, 7, 9, 12}}. (3.24)

Figure 3.4: Visualization of only possibility for the sched-
ules in unique(P ′) for I with s = 2.

Figure 3.4 displays the only possible 2 schedules in se-
rial unique(P ′), obviously considering that k = 3. The
reasoning is as follows:

• Both schedules need to charge at either v2 or v3
as their first stop. Because of the serial Defini-
tion 2.0.11, S1 has to to charge at a station with
a higher index than S2, which has to be v3.

• Schedule S1 can now choose between v4 and v6 for
the next stop. Only v6 preserves the serial constraint
however, that is why we are left with v4 to be used
by S2.

• Schedule S2 is now forced to charge at v7 next, since
it cannot reach v8. Moreover, S1 needs to charge at
v8 because v9 would block S2 from reaching S11 or
later charging stations.

• In order to reach v11 or later charging stations, S2 has
to charge at v9. Only option for the next charging
stop for S1 is v11.

• Finally, v12 is the only option for the next stop of
S2. Only remaining charging station for S1, which is
needed to reach v15 at the same time, is v13.

When it comes to the assignment of cars, we try to re-
duce W (P ′) as much as possible, knowing that C(P ′) is
already fixed at C(P ′) = 5 · 5 = 25. Since waiting cost
originates from the first charging station in every sched-
ule in unique(P ′) only, we can refer to Theorem 3.1.3
with K ′ = {2, 3} and A′ = {a1, a2, a3, a4, a5} to achieve
minimum W (P ′). We obtain

S1 = S2 = S3 = {3, 6, 8, 11, 13}, (3.25)
S4 = S5 = {2, 4, 7, 9, 12},
P ′ = (S1, S2, S3, S4, S5).

10



Evaluating the cost of P ′ leads to

cost(P ′) = C(P ′) +W (P ′)

= 25 + 4

= 29. (3.26)

Considering both cases, s = 1 and s = 2, we can conclude
that a serial P ′ will always have cost(P ′) > 28 = cost(P )
for instance I.

11



Chapter 4

Critical Blocks - First Algorithm

Now that a few first observations and theorems have been
covered, we will proceed with the algorithmic part of the
thesis. In the context of an internship [2], the problem of
EfficientCharging has already been studied for prob-
lem instances where K = V \ {`, `−1, ..., `−x}, with x
bound by

0 ≤ x ≤ k. (4.1)

A next step to approach more generic instances is the set
of critical block instances Icb. That is why this chapter
is devoted to develop a first algorithm, targeted to solve
every instance I ∈ Icb. Please note that the notations
used in Definition 2.0.14 will be applied in this chapter.

The main idea of FirstAlg is to reduce the queu-
ing of the cars by distributing them over a maximum
amount of independent schedules. The algorithm returns
an independent program Pfirst that uses an upper bound
for s = |unique(Pfirst)|.

Definition 4.0.1 (Value of i∗). Given K, k, and `, let
Yi∗ denote the set consisting of a maximum amount of
independent schedules. We denote

i∗ = |Yi∗ |. (4.2)

Since Pfirst uses an upper bound for s, it follows that
s = i∗.

4.1 Computing i∗

In the following we will present a method to compute the
value of i∗ for any I ∈ Icb. To start, a brief definition
and a linked observation is needed.

Let gapm denote the number of nodes between block Bm

and block Bm+1, i.e.

gapm = start(Bm+1)− end(Bm)− 1. (4.3)

The length of the arriving and leaving zone of any block
Bm can be computed by exploiting

length(arrivingZone(Bm))

= min(length(Bm), k−gapm−1) and
length(leavingZone(Bm))

= min(length(Bm), k−gapm). (4.4)

Algorithm 2 uses this approach and returns the start and
end index of every zone after having calculated its length.

Algorithm 2 Computing the start and end of all zones

1: function GetZones(K, k, `)
2: counter ← 0
3: inBlock ← false
4: for i in [1..`−1] do
5: if i∈K != inBlock then
6: inBlock ←!inBlock
7: L.append← counter
8: counter ← 0
9: end if

10: counter ← counter + 1
11: end for
12: L.append← counter
13: if inBlock then
14: L.append← 0
15: end if
16: j ← L[0]
17: for i in [1..|L|−1] do
18: if i mod 2 == 1 then
19: lengthA← min(L[i], k − L[i− 1])
20: arriving ← [j + 1, j + lengthA]
21: j ← j + L[i]
22: lengthL← min(L[i], k − L[i+ 1])
23: leaving ← [j − lengthL+ 1, j]
24: Zones.append← [arriving, leaving]
25: else
26: j ← j + L[i]
27: end if
28: end for
29: return Zones
30: end function

In the above procedure, a first step is to generate the list
L, which follows the structure

L = (gap0, length(B1), gap1, ..., length(Bb), gapb). (4.5)

We should note that

1∈K implies gap0=0 and
`−1∈K implies gapb=0. (4.6)

Based on this, a three dimensional array Zones, storing
all start and end indices of all zones, is returned. The
first dimension refers to the different blocks, the second
dimension differentiates between arriving ("0") and
leaving zones ("1"), and the third dimension references
either the start ("0") or the end ("1") index.

Algorithm 3 can deduct the upper bound for the

12



number of independent schedules by using the array
information and returning the length of the shortest
zone, thus providing a value for i∗.

Algorithm 3 Returning the length of the smallest zone

1: function ShortestZone(Z)
2: min← `
3: b← |Z|
4: for i in [0..b−1] do
5: for j in [0..1] do
6: if Z[i][j][1]− Z[i][j][0] < min then
7: min← Z[i][j][1]− Z[i][j][0]
8: end if
9: end for

10: end for
11: return min
12: end function

Theorem 4.1.1. Algorithm 3 returns the value of i∗ for
any I ∈ Icb.

Proof. Among all arriving and leaving zones, Algorithm 3
returns the length of the zone that contains the fewest
charging stations. Let shortestZone denote this zone and
let d be defined by

d = length(shortestZone). (4.7)

We can easily reason that it is impossible to have a set
of d+1 independent schedules, since every schedule has
to charge in every zone, as well as in shortestZone, at
least once. Having d+1 schedules would imply having at
least one pair of schedules that has at least one charging
station in common.

However, a set of d independent schedules is always possi-
ble to exist. Let S1, S2, ..., Sd denote a set of independent
schedules. Since length(arrivingZone(Bm)) ≥ d, it is
possible for the schedules to arrive in B1. From here on
and for every block Bm, every schedule traverses k edges
(Figure 4.1) which leads to retention of the schedule
order. To make it easier to refer to the schedules in Bm,
we denote S1 the schedule who’s first charging stop in
Bm has the highest node index among all schedules. S1

is followed by S2, S3, ..., Sd (same as on Figure 4.1).

Figure 4.1: Possible behaviour of d independent sched-
ules inside a critical block.

This is repeated until a subset of the schedules reaches
leavingZone(Bm) (on Figure 4.1 only S1). Please note
that it is certainly possible that all schedules pass, i.e.
charge before and after, leavingZone(Bm), due to k

being too large compared to length(arrivingZone(Bm)).
This case can be solved by backshifting every schedule
by the same amount of node indices, s.t. S1 charges at
index end(leavingZone(Bm)).

For the general case however, let x denote the in-
dex of the charging station that S1 arrives at in
leavingZone(Bm). We can assign the remaining sched-
ules, that are not part of the subset reaching the leaving
zone, to charging stations in leavingZone(Bm) in the
following way:

Sd → x+ 1
Sd−1 → x+ 2
...

Those assignments are feasible since we know from 4.4
that length(arrivingZone(Bm)) ≤ k, which implies that
d ≤ k. Furthermore, the assignment method shows that
every Si, that didn’t reach leavingZone(Bm) with k
edge traversals each, has been shifted by exactly d indices.

Knowing that length(leavingZone(Bm)) ≥ d, the
schedules can leave Bm in order to arrive in the next
block Bm+1.

We have shown that d = length(shortestZone) is
the upper bound for the number of independent
schedules and thus provides the value for i∗ for any
I ∈ Icb.

4.2 Algorithm Approach
Having established a way to compute the value of i∗ for
any I ∈ Icb, it is time to dive into the details of the
algorithmic approach.

4.2.1 Single independent schedule
Although FirstAlg is designed for multiple independent
schedules (Subsection 4.2.2), it is worth discussing the
occurrence of a single independent schedule (i∗ = 1).

Here the situation arises where at least one zone of
some block consists of a single charging station. The
consequence is that the node in question is a critical
charging station (Definition 2.0.6). The problem can be
divided into two subproblems:

• Subproblem 1 denoting the cost needed to arrive,
wait, and charge at the first critical charging station.

• Subproblem 2 denoting the cost needed to drive from
the first critical charging station to v`.

13



Figure 4.2: Arriving zone of Bm consists of a sin-
gle critical charging station and serves
as the splitting point of two subprob-
lems.

Referring to Figure 4.2, both subproblems can be solved
optimally by assigning Sgreedy to all cars. Because
charging stations can only be left by one car at a given
time step, we are guaranteed that cars arrive as early as
possible at subproblem 2 (since every car needs to stop at
the critical charging station), which can be accomplished
without queuing at all (due to the consecutive time steps
at which cars enter subproblem 2) and with a minimum
amount of recharges for every car (due to Sgreedy).

This shows that a trivial solution for roads with at
least one critical charging station is the program
P = (Sgreedy, Sgreedy, ...Sgreedy). This even generalizes
to instances where not all blocks are critical. As long
as there is at least one critical charging station, which
constrains the number of independent schedules to a
maximum of one, minimal cost is attained by using this
approach.

4.2.2 Multiple independent schedules
In general (for i∗ ≥ 1), let us discuss in the following
the computation of i∗ independent schedules. For this
purpose, let Si denote the ith independent schedule with
i being bound by

1 ≤ i ≤ i∗. (4.8)

The program uses all i∗ independent schedules, which are
generated by Algorithm 4. The method employs an array
named Road that contains an entry for every node in the
path graph, except for v0 and v`. Let e be the entry for
vj . The value e underlies the rule that states

e = 0 if no schedule stops at vj and
e = i if Si stops at vj . (4.9)

A second array Last stores the current last stop of every
schedule during the execution of the procedure. Last is
initialized with

Last[i−1]
= min(k−(i−1), end(leavingZone(B1))−(i−1)).

(4.10)

After initialization, every schedule attempts to traverse k
edges (from the last stop of the schedule) before recharg-
ing. If traversing k edges does not lead to a charging

station, the algorithm follows a "fixing" procedure that
we describe right after Algorithm 4.

Algorithm 4 Computing all independent schedules

1: function ComputeSchedules(K, k, `)
2: Z ← GetZones(K, k, `)
3: i∗ ← ShortestZone(Z)
4: b← |Z|
5: for v in [1..`−1] do
6: Road[v]← 0
7: end for
8: for i in [1..i∗] do
9: Last[i−1]← min(k−(i−1), Z[0][1][1]−(i−1))

10: end for
11: for m in [1..b] do
12: for i in [1..i∗] do
13: while Last[i− 1] < Z[m− 1][1][0] do
14: new ← Last[i− 1] + k
15: Last[i− 1]← new
16: if new < ` then
17: Road[new]← i
18: end if
19: end while
20: end for
21: Shift(Road, Z[m−1][1][0], Z[m−1][1][1])
22: end for
23: return ExtractSchedules(Road)
24: end function

Since not every node is a charging station, it may happen
that an attempt to traverse k edges may not be possible
and leads to a non charging station. That is why, from
time to time, such an attempted last charging stop needs
to be corrected, and shifted to a node with a lower index,
being a charging station in the leaving zone of the block.
That is the purpose of passing a reference of Road when
calling Algorithm 5.

Algorithm 5 Shifting every schedule if necessary

1: function Shift(Road, start, end)
2: for v in [`..end+1] do
3: if Road[v] > 0 then
4: Shift.append← Road[v]
5: Road[v]← 0
6: end if
7: end for
8: for v in [end..start] do
9: if Road[v] > 0 and |Shift| > 0 then

10: Shift.append← Road[v]
11: end if
12: if |Shift| > 0 then
13: Road[v]← Shift[0]
14: Shift[0].remove
15: end if
16: end for
17: end function

14



Informally, the above procedure operates by iterating
over the nodes using a decreasing index. If the node in-
dex of the last stop of a schedule in some Bm exceeds
end(Bm), it is backshifted into leavingZone(Bm). No
charging stop is backshifted more than necessary. Sched-
ules that do not need any adjustments (i.e. are already
in leavingZone(Bm)) are moved to a charging station
with a smaller index in case it is necessary to "free up"
stations with a higher index. Every schedule keeps its po-
sition concerning how "late" it charges in Bm compared
to the other schedules. All of this is done with the help of
the queue Shift, which operates in a "first-in, first-out"
manner.

Figure 4.3: Example instance with i∗ = 3. S1 is shifted
from v8 to v7 and pushes S2 and S3 to v6 and
v5 respectively.

On a side note, it can be pointed out that, because of
the way Algorithm 5 shifts the schedules, their ordering
along the path graph is preserved and Pfirst is actually
a serial program.

The next step consists of using Algorithm 6 to ex-
tract all i∗ schedules from Road and returning them as
an array of sets of charging stations.

Algorithm 6 Extracting all independent schedules

1: function ExtractSchedules(Road)
2: for v in [1..`−1] do
3: if Road[v] > 0 then
4: Y [Road[v]−1]← Y [Road[v]−1] ∪ {v}
5: end if
6: end for
7: return Y
8: end function

Finally, to put it all together, every car is assigned a
schedule as defined in Algorithm 7. The procedure bal-
ances the set of all cars A over the set

FirstStops = {
min(k, end(B1)),

min(k−1, end(B1)−1),
...,

min(k − (i∗−1), end(B1)− (i∗−1))
} (4.11)

in order to achieve a minimum for W (Pfirst) for the given
number of s = i∗ schedules (Theorem 3.1.3).

Algorithm 7 Implementation of FirstAlg

1: function FirstAlgorithm(I ∈ Icb)
2: Y ← ComputeSchedules(K, k, `)
3: for i in [1..n] do
4: Si ← Y [(i−1) mod |Y |]
5: end for
6: return Pfirst = (S1, S2, ..., Sn)
7: end function

4.3 Performance Analysis
Concerning the performance of FirstAlg, we will
shortly comment on minor observations related to the
charging cost of the schedules and the total waiting cost.
This is followed by the evaluation of the algorithm on a
specific instance.

4.3.1 Analyzing schedule charging cost
To be able to analyze the charging cost of the schedules
in Pfirst, we use the following notation:

cSi = number of stops of Si∈unique(Pfirst),

cSiBm = number of stops of Si∈unique(Pfirst) in Bm,

coptBm = number of stops of Sgreedy in Bm. (4.12)

Theorem 4.3.1. In the context of Pfirst, computed by
FirstAlg when applied to any instance I ∈ Icb, it holds
that ∀i s.t. 1 ≤ i ≤ i∗ : 0 ≤ cSi − cS1 ≤ 1.

Proof. By considering the node indices of the charg-
ing stations that are used by all the schedules in
unique(Pfirst) to charge in arrivingZone(Bm), a posi-
tion can be associated to every Si ∈ unique(Pfirst) for
Bm. Let pos(Si, Bm) denote the position of Si in Bm.
Also, let Si stop at the charging station with the jth
highest node index among all charging stations in Bm

that are actually used by one schedule in unique(Pfirst).
The position of Si for Bm is defined using the value of j,
s.t.

∀Si ∈ P : pos(Si, Bm) = j. (4.13)

An example illustrating the positions for all schedules in
Bm is shown with Figure 4.4.

Figure 4.4: Example position association for every Si in
Bm.

15



From (4.4) it is deductible that the size of any zone cannot
exceed k. A first observation is that

∀i,m : cSiBm = coptBm or cSiBm = coptBm + 1. (4.14)

To show that no schedule charges more than cS1+1 times,
let there be schedules Si and Sj . Using (4.14), there is
for Bm

pos(Si, Bm) < pos(Sj , Bm) (4.15)
implies 0 ≤ cSjBm

− cSiBm
≤ 1.

Given a block Bm, let O ⊆ unique(Pfirst) denote the sub-
set of the schedules that charge coptBm

times in Bm and
let O′ ⊆ unique(Pfirst) denote the subset of the sched-
ules that charge coptBm

+1 times in Bm. There is for Bm

and Bm+1

∀Si ∈ O and ∀Sj ∈ O′ :

pos(Si, Bm) < pos(Sj , Bm)

implies pos(Si, Bm+1) > pos(Sj , Bm+1). (4.16)

Commenting on (4.15) and (4.16), it can be said that
a schedule, that is associated to a smaller position in
Bm, charges less or an equal amount of times in Bm,
compared to a schedule with a bigger position. Also,
having charged coptBm

+ 1 times in Bm means being
associated a smaller position in Bm+1, compared to all
schedules that charged coptBm times in Bm. It can be
stated in a more informal way that if a schedule "wins"
in Bm compared to some other schedule, it does not
"win" again in Bm+1 compared to this schedule. It will
"loose", or "draw" in the best case.

So it can be stated that

∀i s.t. 1 ≤ i ≤ i∗ :

copt ≤ cS1 ≤ cSi and
0 ≤ cSi − cS1 ≤ 1. (4.17)

The explanations of Theorem 4.3.1 illustrate what can
be deducted from the fact that Pfirst is serial in a more
detailed way and specifically applied to FirstAlg.

4.3.2 Analyzing total waiting cost
When analyzing the total waiting cost of Pfirst, a first
observation is that

n ≤ i∗ implies W (Pfirst) = 0. (4.18)

Looking at the case where i∗ ≤ n, it can be stated that
FirstAlg balances the set A over FirstStops, defined
with (4.11). Referring to Theorem 3.1.3, this means that
the waiting cost originating from the charging stations
in FirstStops is a minimum. Also, it can be observed
that no additional waiting cost is originating from all

subsequent charging stations.

The only way to reduce W (Pfirst) is by balancing
A over a set of charging stations with a higher cardi-
nality than |FirstStops| = i∗. This would naturally
lead to a non independent program. Although this
reduces the waiting cost originating from FirstStops,
it is likely that cars will have to queue again when
arriving at the shortest zone at the latest. As already
mention in relation to Conjecture 3.2.1, the study of
non independent programs are not part of the scope of
this thesis. That is why we are unfortunately unable to
comment on the effects of increasing the cardinality of
FirstStops.

4.3.3 Disproving instance
Next, we want to mention that an instance that disproves
optimality for Pfirst has been found during research and
is presented hereafter.

Theorem 4.3.2. Pfirst computed by FirstAlg is not
optimum for every I ∈ Icb

Proof. To show this we construct an instance I by using
a road layout as depicted on Figure 4.5, n = 3 cars, and
k = 4. This produces a smallest zone of i∗ = 3. The three
resulting schedules in unique(Pfirst) look as follows.

Figure 4.5: Showing the charging stops for S1, S2 and S3.

By following the algorithm and assigning every car to one
of the three schedules, this gives us

Pfirst = (

{4, 8, 11, 15, 18, 22, 26, 29},
{3, 6, 10, 14, 17, 21, 24, 28},
{2, 5, 9, 12, 16, 20, 23, 27, 30}). (4.19)

When calculating the cost, we obtain

cost(Pfirst) = C(Pfirst) +W (Pfirst)

= (8 + 8 + 9) + 0

= 25. (4.20)

However, lower cost can be achieved by using Sgreedy for
all three cars (Figure 4.6).

16



Figure 4.6: Showing the charging stops for Sgreedy.

We obtain the program

Pgreedy = (

{4, 8, 12, 16, 20, 24, 28},
{4, 8, 12, 16, 20, 24, 28},
{4, 8, 12, 16, 20, 24, 28}) (4.21)

and the related cost

cost(Pgreedy) = C(Pgreedy) +W (Pgreedy)

= (7 + 7 + 7) + (0 + 1 + 2)

= 24 < cost(Pfirst). (4.22)

17



Chapter 5

Critical Blocks - Second Algorithm

Since FirstAlg turned out to be non optimum, a new
improved algorithm will be presented in this chapter.
Inspired by the instance presented in Theorem 4.3.2,
SecondAlg tries to address the main weakness of
FirstAlg, which seems to be the fixed number of
independent schedules. That is why the new approach is
designed to be more flexible in terms of the used value
for s, denoting the number of unique schedules in a
program. The task however, remains the same, which
means that SecondAlg is still designed for trying to
solve instances that are elements of the set Icb.

A first hurdle, required for the proper functioning
of the algorithm, is to find a way to compute j∗, the
maximum number of independent schedules which all
charge a minimum amount of times.

Definition 5.0.1 (Value of j∗). Given K, k, and `,
let Yj∗ denote the set consisting of a maximum amount
of independent schedules that all charge copt times. We
define j∗ as

j∗ = |Yj∗ |. (5.1)

It should be noted that j∗ is not limited to critical blocks
instances.

Since j∗ is defined with an additional constraint
(compared to i∗) which requires that every schedule has
to charge copt times, it can be stated that

j∗ ≤ i∗. (5.2)

5.1 Computing j∗

In the following, two procedures will be presented that,
when used together, allow the computation of j∗ for any
instance I.

Algorithm 8 Computes greedy schedule that doesn’t
charge in X

1: function Greedy(K,X, k, `)
2: Si ← ∅
3: station← 0
4: while station < `− k do
5: next← station+ k
6: while next∈X or next /∈K do
7: next← next− 1
8: if next == station then
9: return ∅

10: end if
11: end while
12: Si ← Si ∪ {next}
13: station← next
14: end while
15: return S
16: end function

Algorithm 8 returns a greedy schedule that makes charg-
ing stops after a maximum amount of edge traversals.
However, an additional constraint prevents the schedule
to use any charging stations in the set X.

Algorithm 9 Computes set with j∗ schedules that all
charge copt times

1: function GetJStar(K, k, `)
2: Y ← ∅
3: X ← ∅
4: Si ← Greedy(K,X, k, `)
5: X ← X ∪ Si

6: opt← |Si|
7: while |Si| == opt do
8: Y ← Y ∪ S
9: Si ← Greedy(K,X, k, `)

10: X ← X ∪ Si

11: end while
12: return Y
13: end function

Algorithm 9 computes greedy independent schedules by
iteratively calling Algorithm 8 and enhancing the set X
by the charging stations of the just computed schedule
by Algorithm 8. The procedure stops when a schedule,
that charges more than copt times, has been found. This
schedule is discarded and not included in the final re-
turned set. Another stopping criterion is the event in
which charging stations in X prevent the existence of an
additional schedule.

18



The purpose of the following two theorems is to show that
the cardinality of the returned set of schedules, returned
by Algorithm 9, indeed represents the value of j∗.

Theorem 5.1.1. The set of schedules returned by Algo-
rithm 9 is serial.

Proof. Let Yalg denote the set returned by Algorithm 9.
Every Si ∈ Yalg is computed entirely before the start
of the computation of Si+1. By being greedy, every
schedule charges after a maximum of edge traversals
without using a charging station that has already been
used by a schedule with a lower index. Thus it can be
concluded that Yalg is independent.

We denote

• m the jth charging stop of Si−1,

• n the jth charging stop of Si, and
• o the jth charging stop of Si+1. (5.3)

Because of the greediness of Si−1, it is not possible
that n > m. This implies that n < m (independent
Yalg prevents n = m). Also, it can’t be the case that
n < o < m. This is again because of the greediness
of Si, leaving no charging station unoccupied that is
between m and n and feasible to reach. Thus Si enforces
o < n < m.

This shows that the order of every Si ∈ Yalg, when
considering a given charging stop, is always preserved
and the schedules keep on alternating. This clearly
makes the set Yalg serial.

Theorem 5.1.2. The cardinality of Yalg equals j∗.

Proof. In Theorem 3.2.6 we have established that every
independent and proportional program can be converted
into a serial program without modifying its cost. Thus
it can be deducted that at least one serial program,
containing j∗ schedules which all charge copt times, exists.

In Theorem 5.1.1 we have established that Yalg is
serial. By design, Algorithm 9 only appends schedules to
Yalg in case they charge copt times. This leaves us with
the task to show that Yalg contains a maximum number
of schedules, a requirement needed for the cardinality of
Yalg to serve as the value for j∗.

Let Yj∗ denote a serial set of schedules containing
j∗ schedules that all charge copt times. We can adjust
Yj∗ by applying the following modification to every jth
charging stop, with j starting at 1 and ending at copt:
In the sequence of considering every i from 1 to j∗, we
modify the jth charging stop of Si ∈ Yj∗ . The charging
stop is modified to be at the charging station with the
highest index possible (s.t. the schedule is still feasible
with respect to the (j−1)th charging stop) that is not
yet used by some other schedule with a lower index for

the same jth stop. We define max to be this possibly
new node index. We are ensured that:

• No other schedule Sh uses max as the (j+1)th charg-
ing stop.
If this was the case, Sh would charge copt+1 times
in Yj∗ , since it has been shown that j charging stops
are sufficient to reach max.

• It is not possible that max ≥ `.
If this was the case, every schedule would charge
copt+1 times in Yj∗ , since the last charging stop would
not be necessary to reach v`.

Thus it is possible to transform every Si ∈ Yj∗ into a
greedy schedule that behaves the exact same way as in
Algorithm 9. This shows that we are able to transform
Yj∗ into Yalg, ensuring that it is impossible that there
are more schedules in Yj∗ , since they would have been
discovered by Algorithm 9. That is why the cardinality
of Yalg is j∗.

5.2 Algorithm Approach
SecondAlg returns, similarly to FirstAlg, an inde-
pendent program. The addition, compared to FirstAlg,
is that the approach involves iterating over a range of
values for s, starting with s = j∗ and ending at s = i∗.
During the execution, all computed programs P are first
evaluated in terms of cost(P ), before the method finally
returns the program Psecond with the observed minimum
cost.

We can state that exploring an algorithm using s<j∗ is
not beneficial, since having more independent schedules
in a program P implies the possibility of a lower W (P ).
Also, concerning C(P ), s<j∗ is not improving the total
charging cost either, since using s= j∗ already gives ev-
ery car the possibility to reach v` with copt charging stops.

Given that the pseudo code of FirstAlg is gen-
eralized to use a variable number s of independent
schedules instead of i∗, pseudo code for SecondAlg can
be expressed with Algorithm 10.

19



Algorithm 10 Implementation of SecondAlg

1: function SecondAlgorithm(I ∈ Icb)
2: Psecond ← FirstAlgorithm(j∗)
3: minCost← cost(Psecond)
4: for s in [j∗+1..i∗] do
5: P ← FirstAlgorithm(s)
6: cost← CostIndependent(P )
7: if cost < min then
8: Psecond ← P
9: minCost← cost

10: end if
11: end for
12: return Psecond

13: end function

From here on, two more aspects remain to be addressed:
The runtime of the algorithm and the approach to calcu-
late the cost of a given independent program.

5.2.1 Time complexity
Given the addition of the "for loop" which iterates
over the s values, we want to investigate whether the
computational complexity increases in a way s.t. the
algorithm does not run in polynomial time.

We are able to deduce from (4.4) that no arriving
or leaving zone can have length more than k. Combining
this upper bound for i∗ with a lower bound of 1 for j∗

leads to

i∗ − j∗ ≤ k − 1. (5.4)

This means that there is a maximum of k calls to
FirstAlgorithm() and Cost() (both running in polyno-
mial time), preserving polynonmial runtime for Secon-
dAlg.

5.2.2 Cost calculation
A requirement for the implementation of Algorithm 10
is a way to calculate the cost of a program. Fortunately,
for independent programs, there is a relatively trivial
way to compute the cost.

This is because the waiting cost is only originating
from the first charging station of every schedule. Since
only a single car can leave the first charging station of
a schedule at a given time step, all subsequent charging
stations in that schedule will be reached at successive
time steps, thus no more queuing. A method to return
the cost of an independent program is presented with
Algorithm 11.

Algorithm 11 Returns cost(P ) for an independent pro-
gram P

1: function CostIndependent(P )
2: C(P )← 0
3: for Si in P do
4: C(P )← C(P ) + |Si|
5: end for
6: W (P )← 0
7: for Sj in unique(P ) do
8: cars← 0
9: for Si in P do

10: if Sj == Si then
11: W (P )←W (P ) + cars
12: cars← cars+ 1
13: end if
14: end for
15: end for
16: return C(P ) +W (P )
17: end function

5.3 Performance Analysis
This chapter has introduced an improved algorithm
which, due to its brute force nature concerning the value
of s, allows us to state that

∀I ∈ Icb :
cost(SecondAlgorithm(I)) ≤ cost(FirstAlgorithm(I)).

(5.5)

Unfortunately however, as the following Theorem 5.3.1
shows, SecondAlg is not optimum for every possible
critical blocks instance either.

Theorem 5.3.1. The program returned by SecondAlg
is not optimum for every I ∈ Icb.

Proof. To show this, we make use of the instance de-
picted in Figure 5.1, which has parameters equal to
K = {2, 3, 4, 6, 7, 8, 9, 11, 12, 13}, n=4, k=3, and `=15.
Let I denote this instance for the rest of the theorem.

Figure 5.1: SecondAlg applied to I ∈ Icb.

20



Calculating the cost, we first evaluate program P1

using s=j∗=1 schedule. We obtain

cost(P1) = C(P1) +W (P1)

= 16 + 6

= 22. (5.6)

Using s= i∗=2 schedules, we can compute cost(P2) after
having balanced all 4 cars over K ′ = {2, 3} in order to
minimize W (P2). We obtain

cost(P2) = C(P2) +W (P2)

= 20 + 2

= 22. (5.7)

To sum up, there is

cost(Psecond) = min(cost(P1), cost(P2)) = 22. (5.8)

A lower cost can be obtained by creating a program P ′,
where

P ′(unique) = {{3, 6, 9, 12}, {2, 4, 7, 8, 11, 13}},
S1 = S2 = S3 = {3, 6, 9, 12},
S4 = {2, 4, 7, 8, 11, 13},
P ′ = {S1, S2, S3, S4}. (5.9)

The cost of P ′ is

cost(P ′) = C(P ′) +W (P ′)

= 18 + 3

= 21 (5.10)

and we can conclude that

21=cost(P ′)<cost(Psecond)=22. (5.11)

Notable is that, when comparing P2 and P ′, we observe:

• That uniqueStations(P2) and uniqueStations(P ′)
return the exact same set with a cardinaltiy of 10.

• That the cardinalities of the unique schedules are
different. The number of charging stations in the
two schedules of P2 are 5 and 5, respectively, whereas
the number of charging stations in P ′ are 4 and 6,
respectively.

• That the number of cars assigned to the schedules is
different. P2 balances the cars by assigning 2 cars to
each schedule. P ′ assigns 3 cars to the first schedule
and 1 to the second schedule.

Those crucial observations lead us to the next chapter of
this thesis.

21



Chapter 6

Critical Blocks - Third Algorithm

Looking back at the observations made at the end of
Chapter 5, it can be concluded that the modification
needed to obtain P ′ from P2, can be summed up as:

• Decreasing the number of charging stations of the
first unique schedule by one, while increasing the
number of charging stations of the second unique
schedule by one.

• Increasing the number of cars assigned to the first
unique schedule by one, while decreasing the number
of cars assigned to the second unique schedule by one.

We can generalize this by denoting xi the number of cars
that are assigned to schedule Si ∈ unique(P ). Given
Si, Sj ∈ unique(P ), we can create P ′ by

• Decreasing |Si| by 1,

• Increasing |Sj | by 1,

• Increasing xi by 1,

• Decreasing xj by 1,

which modifies cost(P ) in a way that

cost(P ′)− cost(P )

= − xi + (|Si| − 1) + xi + (xj − 1)− |Sj | − (xj − 1)

= |Si| − |Sj | − 1. (6.1)

We assume that we decrease the schedule with the fewer
elements among Si and Sj . Given this, the result in
(6.1) shows that, the greater the difference

∣∣∣|Si| − |Sj |
∣∣∣,

the better the gain in total cost when applying this set
of modifications. Obviously, this is a purely theoretical
analysis. Since the existence of two independent sched-
ules with the prescribed number of stops might not be
possible, those changes are not always feasible.

Having analyzed this, it seems that studying the
following two concepts is essential in order to develop an
improved algorithm for any I ∈ Icb:

• Given that, during computation, we already know
|uniqueStations(P )| beforehand, what is the best
distribution of the charging stations among a fixed
number s= |unique(P )| of independent schedules?

• Given the resulting set Y of s independent schedules,
how to distribute the n cars to the schedules to create
a program P of minimum cost (among all programs
with unique(P ) = Y )?

Let us start analyzing the second concept first.

6.1 Distributing Cars
So far, for FirstAlg and SecondAlg we were not
obliged to dive into this question. Since both algorithms
return a serial set of schedules, balancing the cars while
referring to Theorem 3.1.3 was sufficient. Given a non
serial set of schedules however, the number of charging
stations in each schedule can differ by more than one.
This change makes the distribution of cars among sched-
ules less trivial.

6.1.1 Procedure
Let Y denote a set of independent schedules. Also, we
define by o the cardinality of a subset of cars, s.t.

o = |{a1, a2, ..., ao}| ≤ n. (6.2)

Among all programs with o cars using the schedules in
Y , we denote D(o) the distribution of the first o cars
over the schedules in Y that leads to the program with
the lowest cost.

We once again reuse the notation of xi being the
number of cars assigned to Si. The distribution D(o) is
defined as a two dimensional array, s.t.

D(o) =
[
[|S1|, x1], [|S2|, x2], ..., [|Ss|, xs]

]
. (6.3)

To assign all n cars, we initialize D(0) according to

D(0) =
[
[|S1|, 0], [|S2|, 0], ..., [|Ss|, 0]

]
. (6.4)

In order to get from D(0) to D(n), it is important to state
that we can obtain D(o) by taking D(o−1) and adding
the oth car to one of the schedules. This is why we can
build D(n) from D(0), in a way that

min = argmin
i∈D(o)

(i[0] + i[1]),

D(o)[min][1]+= 1,

D(o+1) = D(o). (6.5)

Commenting on (6.5), by adding the oth car, the pro-
cedure selects the schedule that increases the total cost
the least when assigning a new car to it. This is done by
summing the schedule’s cardinality and the waiting cost
wo of car ao. Next it updates the value xo accordingly.

With Algorithm 12 a recursive method is expressed
in pseudo code that can be called for o=n to assign all
cars to an independent set of schedules Y .

22



Algorithm 12 Assigning oth car to set of independent
schedules Y
1: function AssignCars(Y ={S1, S2, ..., Ss}, o)
2: if o == 0 then
3: return

[
[|S1|, 0], [|S2|, 0], ..., [|Ss|, 0]

]
4: else
5: Do−1 ← AssignCars(Y, o−1)
6: minCost← Do−1[0][0] +Do−1[0][1]
7: min← 0
8: for i in [1..s] do
9: cost← Do−1[i][0] +Do−1[i][1]

10: if cost < minCost then
11: min← i
12: minCost← cost
13: end if
14: end for
15: Do−1[min][1]← Do−1[min][1] + 1
16: return Do−1
17: end if
18: end function

6.1.2 Correctness
However, this procedure can only be claimed correct if
it can be established that creating D(o) from D(o−1)
doesn’t require more change, other than adding the oth
car to one of the schedules.

Theorem 6.1.1. Let Y be a set of s independent sched-
ules and D(o−1) a distribution that leads to Po−1 with
minimal cost(Po−1) (with respect to the fixed Y and o).
It is possible to preserve D(o−1), add the oth car to one
schedule which leads toD(o), and obtain Po with minimal
cost(Po) with respect to the fixed set of schedules.

Proof. We can model the car assignments as a matrix
(Figure 6.1) with n rows, s columns, and cells Cellj,i, s.t.

1 ≤ j ≤ n and
1 ≤ i ≤ s. (6.6)

Every cell Cellj,i contains the cost value that is added to
the total cost when the number of cars, that use schedule
Si, is increased from j−1 to j.

Figure 6.1: Car assignment matrix with cell costs.

To assign all cars, we need to select n cells and sum
the cell values to obtain the total cost of the program.
However, when selecting, there is one restriction: One
can only select Cellj,i if Cellj−1,i has already been
selected (selecting Cell1,i is always possible). This is
because, in order to join the queue as the jth car, the
j−1th car has to be in the queue already.

A crucial observation is that the cell values are in-
creasing by one from top to bottom for a given Si. To
show that it is possible to obtain D(o) by taking D(o−1)
and adding the oth car to one of the schedules, it is
sufficient to state that the cell with the lowest value
(that hasn’t yet been selected), can always be selected
for the oth car.

6.2 Distributing Charging Sta-
tions

Moving on to the next concept, we want to steer the focus
to Definition 2.0.5 that states that

u = |uniqueStations(P )|. (6.7)

Given values for u and s, this section investigates all dis-
tributions of the number of charging stations among s
schedules. We assume that, in a second step, we apply
(6.5) to assign the cars in an optimum way.

6.2.1 Optimum distribution
Unrelated to any problem instance, the distribution of u
among s that leads to the lowest cost(P ) is defined as the
optimum distribution Dopt, s.t.

Dopt = [1, 1, ..., u−(s−1)], (6.8)

with D[i] denoting the number of charging stations in
schedule Si+1.

The aim of the following Theorem 6.2.1, is to show
that Dopt is optimum for any u and s.

Theorem 6.2.1. Given u and s, Dopt is optimum.

Proof. For this theorem, we refer to Theorem 6.1.1 and
the related cost matrix displayed on Figure 6.1. For the
purpose of distributing charging stations, we modify the
matrix in a way that it only displays the waiting cost (not
considering the schedule cardinality), as illustrated with
Figure 6.2.

23



Figure 6.2: Modified charging station distribution ma-
trix.

To obtain a distribution, we have to mark u cells as non
selectable for the next step, which is the car assignment.
This is needed to attribute every schedule a number
of charging stations. Similar to the previous theorem,
Cellj,i can only be marked as non selectable if Cellj−1,i
has already been marked (marking Cell1,i is always
possible). On top of that, we have to mark at least
Cell1,i for every Si, in order to prevent Si = ∅.

To clarify and provide an example, let us assume
that we have, besides every Cell1,i, marked Cell2,1 as
non selectable for S1 (Figure 6.2). This means that
S1 has cardinality |S1| = 2 and the first car assigned
to S1 (if assigned in the next step) adds the value of
Cell3,1, being equal to 2, to the total cost of the program.

We can use an exchange argument to show that
Dopt is optimum and that the best strategy is to mark
the highest value cells as non selectable. Whenever we
can switch from marking a cell with value low to a cell
with value high, s.t.

high > low, (6.9)

this is to be done. During the car assignment in the next
step, this single change means that we have the possibility
to add the value of low instead of the value of high to
the total cost. That is why this switch will result in a
program with lower or equal cost compared to a program
that doesn’t incorporate the switch. By repeating this
until no more such switch is possible, we end up with
Dopt.

6.2.2 Perfectly unbalanced
Obviously, studying the optimality ofDopt is a theoretical
analysis again. This is because having schedules following
Dopt is usually only feasible for a low value of ` (allowing
to reach v` with one stop only) and an unnecessarily high
value of u. Thus we need a definition for an indepen-
dent program P , given an instance I, where the charging
stations are distributed as optimally as possible.

Definition 6.2.1 (Perfectly unbalanced program).
Given an independent program P for instance I and two
schedules Si, Sj ∈ unique(P ). Program P is said to be
perfectly unbalanced if it is impossible (leads to unfea-
sible schedules) to decrease |Si| by one charging station,
while increasing |Sj | by one charging station, s.t. the
obtained schedule cardinalities are

|Si| < |Sj |. (6.10)

6.3 Algorithm Approach
Theorem 6.2.1 provides us with the knowledge that, for
a given number u of charging stations, an unbalanced
distribution among the schedules is desired and of
advantage for the cost of the program.

Unfortunately, FirstAlg and SecondAlg have
been designed without incorporating this knowledge.
Logically, this is the correction that ThirdAlg tries to
make. Using the greedy Algorithm 8 from Chapter 5,
ThirdAlg computes as many greedy independent
schedules as possible.

Algorithm 13 Implementation of ThirdAlg

1: function ThirdAlgorithm(I ∈ Icb)
2: Y ← ∅
3: X ← ∅
4: Si ← Greedy(K,X, k, `)
5: while |Si|! = 0 do
6: Si ← Greedy(K,X, k, `)
7: Y.append← Si

8: X ← X ∪ Si

9: end while
10: return Pthird = CreateP (AssignCars(Y, n))
11: end function

In contrast to FirstAlg and SecondAlg, it is not
necessary to know the number of schedules in advance
or to run the algorithm for multiple values of s. Based
on the assignment of cars according to Algorithm 12, a
final program Pthird is created and returned. It should
be noted that some schedules might not be used by any
cars in the end.

Figure 6.3 shows the result of applying ThirdAlg
to the exact same instance that has been used at the end
of Chapter 5, to show that SecondAlg is not optimum.

24



Figure 6.3: Visualization of unique(Pthird).

Using the car assignment procedure presented in this
chapter, we end up with

Pthird =({3, 6, 9, 12}, {3, 6, 9, 12},
{3, 6, 9, 12}, {2, 4, 7, 8, 11, 13}). (6.11)

It turns out that Pthird = P ′, with P ′ being the program
in Chapter 5 that beats SecondAlg (shown in (5.11)).

What is worth mentioning is that, although the
initial task was to solve any instance I ∈ Icb, this
algorithm doesn’t make use of any specific features of
critical blocks. Without any mathematical support, it
can be carefully stated that one could expect decent
results for arbitrary roads as well.

Because of the greedy approach, we estimate Pthird

to be perfectly unbalanced. However, we do not seek
evidence for this because we are missing another crucial
information. We don’t have any knowledge about
whether u represents a minimum or in general a value
that allows us to compute an independent program
with minimal cost. Although no instance I ∈ Icb, that
shows that ThirdAlg is not optimum has been found,
a proof for optimality is impossible without any further
reasoning about u. That is why the next chapter will go
more in depth concerning the used number of charging
stations.

25



Chapter 7

Critical Blocks - Fourth Algorithm

This chapter makes yet another attempt to design an
algorithm that solves any I ∈ Icb. As a guidance, we
will rely on all discoveries that have been made related
to the topics of the last chapters.

This all starts with the ability to reason more about the
value u, being the number of unique charging stations in
a program or set of schedules. That is why a definition
for a minimal u is given in the following.

Definition 7.0.1 (Value of u∗(s)). Given an indepen-
dent program P using s = |unique(P )| schedules for an
instance I. We denote u∗(s) the minimum value for
|uniqueStations(P )|, s.t.

u∗(s) ≤ u = |uniqueStations(P )|. (7.1)

Making use of this definition, the goal is to develop an al-
gorithm that computes an independent program Pfourth

that satisfies:

• That the number of schedules s is brute forced in the
range from j∗ to i∗ by last chapter’s Algorithm 12
(car assignment).

• That cars are assigned in an ideal way using the same
procedure.

• That |uniqueStations(Pfourth)| is equal to u∗(s).

• That Pfourth is perfectly unbalanced.

7.1 Computing u∗(s)

The next two theorems propose a way to compute the
value of u∗(s) for any I ∈ Icb, which is needed for
FourthAlg.

Theorem 7.1.1. Given an instance I and s ≤ i∗, there
exists a serial program P that has |uniqueStations(P )|
equal to u∗(s).

Proof. Given an instance I and s ≤ i∗, let Pu∗ denote an
independent program that has

|uniqueStations(Pu∗)| = u∗(s). (7.2)

We can refer to Theorem 3.2.7 to transform Pu∗ into serial
P ′ s.t.

|uniqueStations(P ′)| = |uniqueStations(P )|. (7.3)

Theorem 7.1.2. Let Ysecond denote the set of sched-
ules that SecondAlg computes for every I ∈ Icb and
s in the range from j∗ to i∗. For every s there is
|uniqueStations(Ysecond)| = u∗(s).

Proof. In Chapter 4 we have established that FirstAlg
(basis for SecondAlg) computes serial schedules. Look-
ing back at the previous Theorem 7.1.1, we proved that
for every instance I and s ≤ i∗, a serial program or set
of schedules exists that has |uniqueStations(P )| = u∗(s).

We claim that the serial sets of schedules com-
puted by SecondAlg have |uniqueStations(Ysecond)|
equal to u∗(s), since they use the least amount of
charging stations among all serial sets of schedules
for that s. This is because in every block Bm, every
schedule traverses k edges before recharging. All the
schedules that end up charging at a node index higher
than end(leavingZone(Bm)), are shifted back into
leavingZone(Bm). This is done in an "ideal" way,
guaranteeing that the highest possible charging station
indices are used. To sum up, every schedule charges as
late as possible, while still following the serial property,
leading to the use of a minimal amount of charging
stations in total for all s schedules.

7.2 Algorithm Approach
Not only have we established a way to compute u∗(s),
but also, as a side effect, are we provided with an algo-
rithm that uses the value. Nonetheless, the shortcoming
of SecondAlg is that the charging stations are equally
divided over the unique schedules (serial program). This
is what we try to avoid with FourthAlg and for that
purpose we introduce a new version of Algorithm 5,
which has the responsibility of backshifting the charging
stops of the schedules into leavingZone(Bm).

The new version presented with Algorithm 14 is
not based on the alternating ordering of the schedules,
but instead it prioritises schedules with lower indices and
assigns them to charging stations with the highest index
in leavingZone(Bm). If necessary, schedules that don’t
need to be shifted (e.g. S1 and S2 in leavingZone(B2)
on Figure 7.1) are nevertheless moved to stations with
lower indices in order to free up stations for schedules
with lower indices. The priorities of the schedules remain
unchanged for every block Bm and that is the reason
why S1 = Sgreedy in FourthAlg.

26



Figure 7.1: Since S1 and S2 have priority over S3, they
keep their stop and S3 has to charge at v10.

Algorithm 14 Shifting schedules based on prioritising
lower schedule indices
1: function PriorityShift(Road, start, end)
2: for v in [`..end+1] do
3: if Road[v] > 0 then
4: Shift.insertOrdered← Road[v]
5: Road[v]← 0
6: end if
7: end for
8: for v in [end..start] do
9: if |Shift| > 0 then

10: if Road[v] == 0 then
11: Road[v]← Shift[0]
12: Shift[0].remove
13: else
14: Shift.insertOrdered← Road[v]
15: Road[v]← Shift[0]
16: Shift[0].remove
17: end if
18: end if
19: end for
20: end function

Throughout the algorithm, indices are added to the list
Shift in a way that Shift stays ordered increasingly.
Also, we rename ComputeSchedules (Algorithm 4) to
NewComputeSchedules() after the only change to now
make the call to PriorityShift() instead of Shift() (Line
21). Hence after adding the call to AssignCars(), which
was introduced in the last chapter, we denote pseudo code
for FourthAlg computing Pfourth by Algorithm 15.

Algorithm 15 Implementation of FourthAlg

1: function FourthAlgorithm(I ∈ Icb)
2: Y ← NewComputeSchedules(K, k, `)
3: return Pfourth = CreateP (AssignCars(Y, n))
4: end function

Important to note is that we do not have to run the al-
gorithm for several values of s. FourthAlg computes a

maximum of s = i∗ independent schedules, knowing that
Si will not be influenced by the addition of Si+1 (due to
the priority shifting). Same as in ThirdAlg, the func-
tion AssignCars() can modify the value of s by not as-
signing any cars to some schedules. Concerning this, we
know that given Si, Sj , there is

i < j =⇒ |Si| ≤ |Sj |. (7.4)

This is why |Si| = |Sj | might be the only scenario where
Si is not assigned any car while Sj is used by one. In
general however, schedules are left out (not assigned any
car) by decreasing schedule index. That is why, for the
resulting s, we are ensured that Pfourth uses u∗(s).

7.3 Performance Analysis
As usual, in the following section we will discuss the per-
formance of the newly introduced algorithm.

7.3.1 Analysis for critical blocks
To claim that FourthAlg returns the independent pro-
gram with the lowest cost for any I ∈ Icb, we base our-
selves on the next three theorems. First of all, Theo-
rem 7.3.1 explains why FourthAlg uses u∗(s) unique
charging stations. To do this, we are required to study
the effect of the newly introduced PriorityShift() func-
tion and compare the behaviour to SecondAlg.

Theorem 7.3.1. Given program Pfourth, com-
puted by FourthAlg for any instance I ∈ Icb,
|uniqueStations(Pfourth)| is always equal to u∗(s), for
any j∗ ≤ s ≤ i∗.

Proof. In Theorem 7.1.2 we have shown that the serial
sets of schedules, denoted Ysecond and computed by
SecondAlg for any s from j∗ to i∗, use u∗(s) unique
charging stations. Furthermore, we know that the only
difference between the schedule computation in Secon-
dAlg and FourthAlg is the new shifting procedure
based on schedule priorities.

Given a program P for any I ∈ Icb, we denote by
Last(Bm) the set containing the indices of the last
charging stop of every Si ∈ unique(P ) in block Bm. In
the following we aim to show that this set contains the
same indices for Psecond and Pfourth for every Bm and
any s from j∗ to i∗. If this is the case, both algorithms
clearly use the exact same number of charging stations
since their schedule behaviour inside block Bm is the
same (attempting to do k edge traversals). Hence we
would obtain

|uniqueStations(Pfourth)|
= |uniqueStations(Psecond)| = u∗(s). (7.5)

To do this, we denote by In(Bm) the set of charging sta-
tion indices that are reached by the schedules that arrive

27



in leavingZone(Bm) by doing k edge traversals before
each stop. Also, we define by out(Bm) the number of
schedules that arrive at an index which is higher than
end(leavingZone(Bm)), s.t.

out(Bm) = |unique(P )| − |In(Bm)|. (7.6)

Lastly, let Free(Bm) denote the set of the highest pos-
sible indices of unoccupied (free) charging stations in
leavingZone(Bm) before PriorityShift() begins, s.t.

|Free(Bm)| = out(Bm) and
Free(Bm) ∩ In(Bm) = ∅. (7.7)

Independently whether we make the call to Shift() or
PriorityShift(), Last(Bm) will always be composed by

Last(Bm) = In(Bm) ∪ Free(Bm). (7.8)

This is because, in both procedures, no sched-
ule is backshifted more than necessary. Hence,
SecondAlg and FourthAlg use the exact same
charging stations for any s from j∗ to i∗ and
|uniqueStations(Pfourth)| = u∗(s).

Moreover, an explanation why Pfourth is indeed perfectly
unbalanced, is necessary.

Theorem 7.3.2. For any instance I ∈ Icb, program
Pfourth is perfectly unbalanced.

Proof. To start the proof, we define the schedules
Sh, Si, Sj ∈ unique(Pfourth) in a way that

1 ≤ h < i < j ≤ s. (7.9)

In order to possibly disprove that Pfourth is perfectly
unbalanced, we would need to be able to reduce the car-
dinality |Si| by one and increase the cardinality |Sj | by
one. This is because of Definition 6.2.1 about perfectly
unbalanced programs and last section’s implication (7.4).

Since Si is greedy, it’s cardinality can only be re-
duced if it is modified to stop at a charging stop that is
used by Sh (which has priority over Si). If making this
switch indeed leads to Si charging one time less often, we
end up by increasing the number of charging stops of Sh

by one (restoring the minimum of u∗(s)), which can now
use the initial charging stop of Si. This leads to a less
balanced distribution of charging stations. In general, we
are unable to increase the number of charging stops of
Sj without also doing the same for Sh, when decreasing
the number of charging stops for Si. This shows that
Pfourth is perfectly unbalanced.

Lastly, we still have to investigate programs that use
u > u∗(s) unique charging stations and compare them to
perfectly unbalanced programs using u∗(s) unique charg-
ing stations.

Theorem 7.3.3. For a given instance I and s in the
range from j∗ to i∗, let Pu∗ denote an independent and
perfectly unbalanced program using u∗(s) unique charg-
ing stations. Also, let P ′ define an independent program
that uses u unique charging stations for the same s, s.t.
u > u∗(s). There is always cost(Pu∗) ≤ cost(P ′).

Proof. Let x denote the difference in unique charging sta-
tions between Pu∗ and P ′, s.t.

x = |uniqueStations(P ′)| − |uniqueStations(Pu∗)|.
(7.10)

Let Shigh ∈ Pu∗ define the schedule in Pu∗ with the high-
est number of charging stations. Given Si ∈ Pu∗ and
S′i ∈ P ′, s.t. i 6= high, obviously the best possible dis-
tribution of charging stations among schedules for P ′ is
that

|S′i| = |Si| and
|S′high| = |Shigh|+ x. (7.11)

In the best case, no car will be assigned to S′high, leading
to cost(Pu∗) = cost(P ′). This explains why we add the x
charging stations to Shigh, increasing the probability of
no car being assigned to it. The car assignment procedure
clearly considers Shigh as the last schedule, when it comes
to assigning the first car to each schedule. Any other
case, where S′high is used by one car at least, states that
cost(Pu∗) ≤ cost(P ′).

7.3.2 Analysis for arbitrary roads
Having shown that Pfourth uses a minimum amount of
charging stations, is perfectly unbalanced and determines
s by assigning the cars in an ideal way, we can ask our-
selves why this algorithm cannot be applied to instances
that are not in Icb. Two aspects prevent us from doing
this:

• So far we haven’t studied i∗ for arbitrary roads.
That is why we have no knowledge about the up-
per bound of independent schedules. Letting the al-
gorithm compute a set of independent schedules ac-
cording to the definition of the procedure, does not
provide a guarantee that this is actually the maxi-
mum number of schedules. As a result, waiting time
could be higher than necessary.

• Furthermore, the way of computing the schedules
in FourthAlg is specifically designed for critical
blocks. We haven’t established a method to compute
u∗(s) for any arbitrary road and hence do not know
how to decide on the behaviour of the schedules.

28



7.4 Algorithm Comparisons
In the context of a recapitulating section, we compare
FourthAlg to the three algorithms presented earlier in
this thesis. To do this, we employ the relatively long road
layout of the instance at the end of Chapter 4. This time
however, we use n=8, while retaining k=4.

Figure 7.2: Overview of the main four algorithms applied
to the same instance.

By applying the algorithm’s methods to assign the 8 cars
to the schedules shown in Figure 7.2, we end up with

cost(Pfirst) = 73,

cost(Psecond) = 72,

cost(Pthird) = 71,

cost(Pfourth) = 71. (7.12)

In fact, for any n, there is

cost(Pfourth)=cost(Pthird)≤cost(Psecond)≤cost(Pfirst).
(7.13)

The value of n= 8 has been analyzed in a more precise
way, because it is the smallest value where the cost is
decreasing from Pfirst to Psecond to Pthird.

Furthermore, it can be observed on Figure 7.2 that
unique(Pthird) = unique(Pfourth). No clear evidence
has been found that this is the case for any I ∈ Icb.
However, by comparing the greedy schedule computation
and the shifting based on schedule priorities, it seems
that both algorithms are likely to produce the same
output. That is why we note the following statement as
a conjecture.

Conjecture 7.4.1. For any I ∈ Icb, Pthird computed
by ThirdAlg, and Pfourth computed by FourthAlg,
there is always unique(Pthird) = unique(Pfourth) and
hence cost(Pthird)=cost(Pfourth).

29



Chapter 8

Conclusion

By reflecting back at the previous chapters, we started
this thesis by providing terminology, definitions and
early observations for EfficientCharging. Next, all
subsequent chapters discussed an algorithm tailored
to solve inputs coming from the set of critical blocks
instances. Gradually, we gathered new insights about
the shortcomings of the procedure and hence used this
information to adapt the next chapter’s attempt.

Overall, the most significant contributions of this
thesis can be summed up as follows:

• We have proposed a way to compute the value j∗ for
any instance I and the values i∗ and u∗(s) for any
instance I ∈ Icb.

• We have shown that having an unbalanced distribu-
tion of charging stations over schedules is allowing
lower program cost (in contrast to balancing cars
over stations reducing W (P )).

• Ultimately, we have developed FourthAlg which
computes the independent program with the lowest
cost for every critical blocks instance.

Next to the restrictions on the studied problem instances,
two aspects of EfficientCharging that unfortunately
couldn’t be solved in a meaningful way, should be named.

• First of all, we refer to Conjecture 3.2.1 about the
conversion to independent programs. Without being
able to prove the conjecture, the search for an al-
gorithm that returns an optimum program for every
instance turns out to be very difficult. Only minor
insights regarding this topic have been given in this
thesis, hence creating a suited starting point for fu-
ture work.

• Secondly, it seems to be a difficult task to reason
about which value for the number of unique sched-
ules s can lead to a program with the lowest cost.
Algorithm 12, responsible for assigning cars to the
schedules, can adjust s by not adding any cars to
some schedules. However, it seems that knowing the
correct value for s before the actual computation of
the schedules would create an advantage during the
development stage of an algorithm.

In a more general comment, it seems likely that the so-
lution for any instance of EfficientCharging can be
computed in polynomial time. However, it turned out
that the scope of this thesis has not been sufficient enough
to address this question in a substantial way.

Finally, we should also mention that the problem dis-
cussed in this thesis underlies the framework set by Ef-
ficientCharging itself. This enforces that cars have
the same battery capacity, traverse a simple path graph,
start and end at the same node, leave the start node at
the same time, and drive in the same direction. Therefore
it is safe to claim that the broad problem of efficient cen-
tralized charging for electric cars is still far from solved.
Lifting one ore more of the just mentioned constraints
opens doors for new areas of research.

30



Bibliography

[1] Small Jonty. “Electric cars and the effects of cooper-
ation on total charge time”. MA thesis. Department
of Data Science and Knowledge Engineering, Maas-
tricht University, 2018.

[2] Schneider Pit. “Electric Cars - Efficient Centralized
Charging”. In: 1 (2019).


	Introduction
	Context
	Problem Definition
	Related Work

	Definitions
	Observations
	First Observations
	Detecting critical charging stations
	Schedule ordering influences program cost
	Balancing leads to minimal waiting

	Program Conversions
	Conversion to reduced programs
	Conversion to independent programs
	Conversion to serial programs


	Critical Blocks - First Algorithm
	Computing i*
	Algorithm Approach
	Single independent schedule
	Multiple independent schedules

	Performance Analysis
	Analyzing schedule charging cost
	Analyzing total waiting cost
	Disproving instance


	Critical Blocks - Second Algorithm
	Computing j*
	Algorithm Approach
	Time complexity
	Cost calculation

	Performance Analysis

	Critical Blocks - Third Algorithm
	Distributing Cars
	Procedure
	Correctness

	Distributing Charging Stations
	Optimum distribution
	Perfectly unbalanced

	Algorithm Approach

	Critical Blocks - Fourth Algorithm
	Computing u*(s)
	Algorithm Approach
	Performance Analysis
	Analysis for critical blocks
	Analysis for arbitrary roads

	Algorithm Comparisons

	Conclusion

